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Abstract
To examine the universality for the parameter-mismatching effect on weak
chaotic synchronization, we study coupled multidimensional invertible systems
such as the coupled Hénon maps and coupled pendula. By generalizing the
method proposed in coupled one-dimensional (1D) noninvertible maps, we
introduce the parameter sensitivity exponent δ to measure the degree of the
parameter sensitivity of a weakly stable synchronous chaotic attractor. In
terms of the parameter sensitivity exponents, we characterize the effect of
the parameter mismatch on the intermittent bursting and the basin riddling
occurring in the regime of weak synchronization. It is thus found that the scaling
exponent µ for the average characteristic time (i.e., the average interburst time
and the average chaotic transient lifetime) for both the bubbling and riddling
cases is given by the reciprocal of the parameter sensitivity exponent, as in
the simple system of coupled 1D maps. Hence, the reciprocal relation (i.e.,
µ = 1/δ) seems to be ‘universal’, in the sense that it holds in typical coupled
chaotic systems of different nature.

PACS number: 05.45.Xt

1. Introduction

Recently, because of its potential practical applications (e.g., see [1]), the phenomenon of
synchronization in coupled chaotic systems has become a field of intensive research. When
identical chaotic systems synchronize, a synchronous chaotic attractor exists on an invariant
subspace of the whole phase space [2]. If the synchronous chaotic attractor is stable against a
perturbation transverse to the invariant subspace, it may become an attractor in the whole phase
space. Such transverse stability of the synchronous chaotic attractor is intimately associated
with transverse bifurcations of periodic saddles embedded in the synchronous chaotic attractor
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[3–8]. If all periodic saddles are transversely stable, the synchronous chaotic attractor becomes
asymptotically stable and then we have ‘strong’ synchronization. However, as the coupling
parameter passes through a threshold value, a periodic saddle first becomes transversely
unstable through a local bifurcation. After this first transverse bifurcation, trajectories may
be locally repelled from the invariant subspace when they visit the neighborhood of the
transversely unstable periodic repeller. Thus, we have ‘weak’ synchronization. For this
case, intermittent bursting [9, 10] or basin riddling [11] occurs, depending on the global
dynamics. If the global dynamics of the system is bounded and there are no attractors off the
invariant subspace, locally repelled trajectories exhibit transient intermittent bursting. On the
other hand, if the global dynamics is unbounded or there exists an attractor off the invariant
subspace, repelled trajectories may go to another attractor (or infinity), and hence the basin
of attraction becomes riddled with a dense set of ‘holes’, belonging to the basin of another
attractor (or infinity).

In a real situation, a small mismatch between the subsystems that destroys the invariant
synchronization subspace is unavoidable. Hence, the effect of the parameter mismatch must
be taken into consideration for the study of the loss of chaos synchronization. In the regime of
weak synchronization, a typical trajectory may have segments exhibiting positive local (finite-
time) transverse Lyapunov exponents because of local repulsion of transversely unstable
periodic repellers embedded in the synchronous chaotic attractor. For this case, any small
mismatch results in a permanent intermittent bursting and a chaotic transient with a finite
lifetime for the bursting and riddling cases, respectively. These attractor bubbling and chaotic
transient demonstrate the sensitivity of the weakly stable synchronous chaotic attractor with
respect to the variation of the mismatching parameter. Recently, we have introduced a
quantifier, called the parameter sensitivity exponent, which measures the ‘degree’ of the
parameter sensitivity in coupled one-dimensional (1D) noninvertible maps and characterized
the effect of parameter mismatch on the bubbling and riddling of the weakly stable synchronous
chaotic attractor [12]. Here, we extend the method of quantitatively characterizing the
parameter sensitivity of the weakly stable synchronous chaotic attractor in terms of the
parameter sensitivity exponent to coupled multidimensional invertible systems and examine
the universality for the parameter-mismatching effect on weak synchronization.

This paper is organized as follows. In section 2, as representative models of coupled
invertible systems, we consider coupled Hénon maps and coupled pendula. For each case,
to measure the degree of the parameter sensitivity, we introduce the parameter sensitivity
exponent, and quantitatively characterize the parameter sensitivity of the weakly stable
synchronous chaotic attractor. In terms of these parameter sensitivity exponents, the effect of
parameter mismatch on the attractor bubbling and basin riddling is characterized. The scaling
exponent µ for the average laminar length of the bubbling attractor and the average lifetime
of the chaotic transient is thus found to be given by the reciprocal of the parameter sensitivity
exponent. This reciprocal relation seems to be ‘universal’, because it holds in typical coupled
chaotic systems such as the coupled 1D maps, coupled Hénon maps and coupled pendula.
Finally, we give a summary in section 3.

2. Parameter-mismatching effect in coupled invertible systems

In this section, by generalizing the method proposed in coupled 1D noninvertible maps, we
introduce the parameter sensitivity exponent in the coupled Hénon maps and coupled pendula,
and quantitatively characterize the parameter sensitivity of the weakly stable synchronous
chaotic attractor. In terms of the parameter sensitivity exponents, the effect of parameter
mismatch on the bubbling and riddling is characterized. Thus, the scaling exponent µ for the
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average interburst time and the average chaotic transient lifetime is found to be given by the
reciprocal of the parameter sensitivity exponent (i.e., µ = 1/δ), as in the coupled 1D maps.

2.1. Characterization of the parameter-mismatching effect in coupled Hénon maps

As a first example, we consider two coupled invertible Hénon maps, often used as a
representative model for the Poincaré maps of coupled chaotic oscillators [13]:

T :

{
xn+1 = F(xn, yn) = f(xn, a) + (1 − α)cg(xn, yn),

yn+1 = G(xn, yn) = f(yn, b) + cg(yn, xn),
(1)

where xn = (
x(1)

n , x(2)
n

)
and yn = (

y(1)
n , y(2)

n

)
are state variables of the two subsystems at

a discrete time n, the uncoupled dynamics (c = 0) is governed by the Hénon map with a
nonlinearity parameter p (p = a, b) and a damping parameter β (|β| < 1),

f(x, p) = (f (x(1), p) − x(2), βx(1)); f (x, p) = 1 − px2, (2)

c is a coupling parameter between the two subsystems, and g(x, y) is a coupling function of
the form

g(x, y) = (g(x(1), y(1)), 0); g(x, y) = y2 − x2. (3)

For α = 0, the coupling is symmetric, while for nonzero α (0 < α � 1) it becomes
asymmetric. The extreme case of asymmetric coupling with α = 1 corresponds to the
unidirectional coupling. In such a way, α tunes the degree of asymmetry in the coupling.
This asymmetric coupling naturally arises in the dynamics of two clusters for the case of
global coupling, in which each element is coupled to all the other elements with equal strength
[13]. For the ideal case of identical Hénon maps (i.e., a = b), there exists an invariant
synchronization plane, x(1) = y(1) and x(2) = y(2), in the x(1)–x(2)–y(1)–y(2) phase space.
However, in a real situation a small mismatch between the two subsystems and a small noise
are unavoidable, and hence the synchronization plane is no longer invariant. Here, we restrict
our attention only to the mismatching case in the absence of noise. To take into consideration
such a mismatching effect, we introduce a small mismatching parameter ε in the coupled
Hénon maps of equation (1) such that

b = a − ε. (4)

Recently, some results on the attractor bubbling in the unidirectionally coupled case of
α = 1 have been reported in [16]. Here, as an example, we choose a mutually coupled case
of α = 0.75, and investigate both the bubbling and riddling for a fixed value of β = 0.1. For
a = 1.8, we investigate the parameter-mismatching effect by varying the coupling parameter
c. For this case a synchronous chaotic attractor exists in the interval of cb,l < c < cb,r ,
where cb,l = −2.3979 and cb,r = −0.4821. As the coupling parameter c passes cb,l or cb,r ,
the synchronous chaotic attractor loses its transverse stability through a blowout bifurcation
[13], and then a complete desynchronization occurs. In the regime of synchronization, a
strongly stable synchronous chaotic attractor exists for ct,l < c < ct,r , where ct,l = −2.32
and ct,r = −0.56. For this case of strong synchronization, the synchronous chaotic attractor
exhibits no parameter sensitivity, because all periodic saddles embedded in the synchronous
chaotic attractor are transversely stable. However, as the coupling parameter c passes ct,r

and ct,l , bubbling and riddling transitions occur through the first transverse bifurcations of
periodic saddles, respectively [7, 8], and then we have weak synchronization. For this case,
the weakly stable synchronous chaotic attractor has a parameter sensitivity, because of local
transverse repulsion of the periodic repellers embedded in the synchronous chaotic attractor.
Hence, however small the parameter mismatching ε, a persistent intermittent bursting, called
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Figure 1. Effect of parameter mismatch with ε = 0.002 on weak synchronization for a = 1.8 in
mutually coupled Hénon maps with α = 0.75. For c = −0.49, projections of a bubbling attractor
onto the (a) x(1)–y(1) and (b) x(2)–y(2) planes are given. In both (a) and (b), the initial orbit point
is (x(1), x(2), y(1), y(2)) = (0.7, 0.07, 0.7, 0.07), the 5 × 103 points are computed before plotting
and the next 4 × 104 points are plotted. For the riddling case of c = −2.39, the synchronous
chaotic attractor with a basin (grey region) riddled with a dense set of ‘holes’ leading to divergent
trajectories (white region) for ε = 0 is transformed into a chaotic transient (black dots). In
(c) (d), a 2D slice with x(2) = y(2) = 0.05 (x(1) = y(1) = 0.5) through the 4D riddled basin of the
weakly stable synchronous chaotic attractor is shown. Projections of a chaotic transient starting
from an initial orbit point (x(1), x(2), y(1), y(2)) = (0.7, 0.07, 0.7, 0.07) onto the (c) x(1)–y(1) and
(d) x(2)–y(2) planes are given.

the attractor bubbling, occurs in the regime of bubbling (ct,r < c < cb,r ). Figures 1(a) and (b)
show such attractor bubbling for c = −0.49 and ε = 0.002. On the other hand, in the
regime of riddling (cb,l < c < ct,l), the weakly stable synchronous chaotic attractor with a
riddled basin for ε = 0 is transformed into a chaotic transient (denoted by black dots) with
a finite lifetime in the presence of parameter mismatch, as shown in figures 1(c) and (d ) for
c = −2.39. As c is changed away from ct,l or ct,r , transversely unstable periodic repellers
appear successively in the synchronous chaotic attractor via transverse bifurcations. Then, the
degree of the parameter sensitivity of the synchronous chaotic attractor increases, because of
the increase in the strength of local transverse repulsion of the periodic repellers embedded in
the synchronous chaotic attractor.

We generalize the method proposed in the coupled 1D maps [12] to the case of the coupled
Hénon maps and quantitatively characterize the parameter sensitivity of the synchronous
chaotic attractor as follows. As the strength of the local transverse repulsion from the
synchronization plane increases, the synchronous chaotic attractor becomes more and more
sensitive with respect to the variation of ε. Such parameter sensitivity of the synchronous
chaotic attractor for ε = 0 may be characterized by calculating the derivative of the transverse
variable un = xn − yn, denoting the deviation from the synchronization plane, with respect
to ε

(
i.e. ∂un+1

∂ε

∣∣
ε=0 = ∂xn+1

∂ε

∣∣
ε=0 − ∂yn+1

∂ε

∣∣
ε=0

)
. Using equation (1), we may obtain the following
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recurrence relation,

∂un+1

∂ε

∣∣∣∣
ε=0

= r(x∗
n)

∂un

∂ε

∣∣∣∣
ε=0

+ fa(x∗
n, a), (5)

where ∂un

∂ε

∣∣
ε=0 =

(
∂u

(1)
n

∂ε

∣∣
ε=0,

∂u
(2)
n

∂ε

∣∣
ε=0

)
, the 2 × 2 matrix r(x∗

n) is given by

r(x∗
n) ≡

(
fx(1)

(
x(1)∗

n , a
) − (2 − α)ch

(
x(1)∗

n

) −1
β 0

)
, (6)

and

fa(x∗
n, a) =

(
fa

(
x(1)∗

n , a
)

0

)
. (7)

Here, fx and fa are the derivatives of f (x, a) with respect to x and a, {(x∗
n, y∗

n)} is a synchronous
orbit with x∗

n = y∗
n for ε = 0, and h(x) is a reduced coupling function defined by [14]

h(x) ≡ ∂g(x, y)

∂y

∣∣∣∣
y=x

. (8)

Hence, starting from an initial orbit point (x∗
0, y∗

0) on the synchronization plane, we may obtain
derivatives at all points of the orbit:

∂uN

∂ε

∣∣∣∣
ε=0

=
N∑

k=1

RN−k(x∗
k)fa(x

∗
k−1, a) + RN(x∗

0)
∂u0

∂ε

∣∣∣∣
ε=0

, (9)

where

RM(x∗
m) =

M−1∏
i=0

r(x∗
m+i ), (10)

which is a product of the ‘transverse Jacobian matrices’ r(x∗) determining the stability against
a perturbation transverse to the synchronization plane and R0 = I (identity matrix). Note that
the eigenvalues, λ

T,1
M (x∗

m) and λ
T,2
M (x∗

m)
(∣∣λT,1

M (x∗
m)

∣∣ �
∣∣λT,2

M (x∗
m)

∣∣), of RM(x∗
m) are associated

with local (M-time) transverse Lyapunov exponents σ
T,1
M and σ

T,2
M

(
σ

T,1
M � σ

T,2
M

)
of the

synchronous chaotic attractor that are averaged over M synchronous orbit points starting from
x∗

m as follows:

σ
T,i
M (x∗

m) = 1

M
ln

∣∣λT,i
M (x∗

m)
∣∣ (i = 1, 2). (11)

Thus, λ
T,1
M and λ

T,2
M become local (transverse stability) multipliers that determine local

sensitivity of the motion during a finite time M. As M → ∞, σ
T,1
M approaches the largest

transverse Lyapunov exponent σ
(1)
T that denotes the average exponential rate of divergence

of an infinitesimal perturbation transverse to the synchronous chaotic attractor. Because the
initial point (x∗

0 , y∗
0 ) starts on the synchronization plane (i.e., x∗

0 = y∗
0 ), the value of the initial

transverse variable u0 = x∗
0 −y∗

0 is always zero, independently of ε
(
i.e., ∂u0

∂ε

∣∣
ε=0 = 0

)
. Hence,

equation (9) reduces to

∂uN

∂ε

∣∣∣∣
ε=0

= SN(x∗
0) ≡

N∑
k=1

RN−k(x∗
k)fa(x

∗
k−1, a). (12)

Since the values of fa are bounded, the boundedness of the partial sum SN is determined just
by the largest eigenvalues λ

T,1
M of RM .

For the case of weak synchronization, there are transversely unstable periodic
repellers embedded in the synchronous chaotic attractor. When a typical trajectory visits
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neighbourhoods of such repellers, it has segments experiencing local repulsion from the
synchronization plane. Thus, the distribution of largest local transverse Lyapunov exponents
σ

T,1
M for a large ensemble of trajectories and for large M may have a positive tail [12]. For

the segments of a trajectory exhibiting a positive largest local transverse Lyapunov exponent(
σ

T,1
M > 0

)
, the largest local transverse multipliers λ

T,1
M

(= ± exp
(
σ

T,1
M M

))
can be arbitrarily

large, and hence the partial sums S
(i)
N (i = 1, 2) may be arbitrarily large. This implies

unbounded growth of the derivatives ∂u
(i)
N

∂ε

∣∣
ε=0 (i = 1, 2) as N tends to infinity, and consequently

the weakly stable synchronous chaotic attractor may have a parameter sensitivity.
As an example, we consider the case of weak synchronization in the mutually coupled case

of α = 0.75 for c = −0.49. If we iterate equation (5) with ∂u0
∂ε

∣∣
ε=0 = 0 along a synchronous

trajectory starting from an initial orbit point (x∗
0, y∗

0) on the synchronization plane, then we

obtain the partial sum SN(x∗
0) of equation (12). The partial sum S

(i)
N

(= ∂u
(i)
N

∂ε

∣∣
ε=0

)
(i = 1, 2)

becomes very intermittent. However, by looking only at the maximum

γ
(i)
N (x∗

0 ) = max
0�n�N

∣∣S(i)
n (x∗

0)
∣∣ (i = 1, 2), (13)

one can easily see the boundedness of S
(i)
N . For this case, γ (1)

N and γ
(2)
N grow unboundedly, and

hence the weakly stable synchronous chaotic attractor has a parameter sensitivity. The growth
rate of the function γ

(i)
N (x∗

0) with time N represents a degree of the parameter sensitivity, and
can be used as a quantitative characteristic of the weakly stable synchronous chaotic attractor.
However, γ (i)

N (x∗
0) depends on a particular trajectory. To obtain a ‘representative’ quantity that

is independent of a particular trajectory, we consider an ensemble of randomly chosen initial
points (x∗

0, y∗
0) on the synchronization plane, and take the minimum value of γ

(i)
N with respect

to the initial orbit points,

	
(i)
N = min

x∗
0

γ
(i)
N (x∗

0) (i = 1, 2). (14)

While other representative quantities may be defined (e.g., the average of γN over an ensemble
of trajectories), the numerical convergence for the case of minimum value is better than
that for other cases, and hence we choose the minimum value as a representative one, as
in the case of the phase sensitivity exponent in the quasiperiodically forced systems [17].
Figure 2(a) shows parameter sensitivity functions 	

(1)
N and 	

(2)
N , which are obtained in an

ensemble containing 100 random initial orbit points. The unbounded growth of both 	
(1)
N

and 	
(2)
N is determined by the same largest local transverse multiplier λ

T,1
M (i.e., the largest

eigenvalue of RM in equation (10)). Hence, they grow unboundedly with the same power δ,

	
(i)
N ∼ Nδ for i = 1, 2. (15)

Here, the value of δ � 4.6 is a quantitative characteristic of the parameter sensitivity of
the synchronous chaotic attractor for c = −0.49, and we call it the parameter sensitivity
exponent.

In each regime of bubbling or riddling, we obtain the parameter sensitivity exponents
by changing the coupling parameter c from the bubbling or riddling transition point to the
blowout bifurcation point. However, the value of the parameter sensitivity exponent obtained
in an ensemble containing 100 random initial points fluctuates a little, depending on the
chosen ensemble. Hence, it is necessary to consider many ensembles for obtaining a better
statistics. From our extensive numerical simulations, we find that it is enough to consider
about 100 ensembles for each c, each of which contains 100 randomly chosen initial orbit
points. Thus, we choose the average value of the 100 parameter sensitivity exponents obtained
in the 100 ensembles. Figure 2(b) shows the plot of such averaged parameter sensitivity
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Figure 2. Parameter sensitivity for a = 1.8 in mutually coupled Hénon maps with α = 0.75.
Parameter sensitivity functions 	

(1)
N and 	

(2)
N , exhibiting asymptotic power-law behaviours, are

shown in (a) for c = −0.49. They are well fitted with straight lines with the slope δ � 4.6. (b) Plot
of the parameter sensitivity exponents δ (solid circles) versus c. (c) Plot of the scaling exponents
µ (open circles) for the average characteristic time versus c. They agree well with the reciprocal
of the parameter sensitivity exponents (crosses).

exponents (denoted by solid circles) versus c. Note that the parameter sensitivity exponent δ

monotonically increases as c is varied away from the bubbling or riddling transition point, and
tends to infinity as c approaches the blowout bifurcation point. This increase in the parameter
sensitivity of the synchronous chaotic attractor is caused by the increase in the strength of local
transverse repulsion of periodic repellers embedded in the synchronous chaotic attractor. After
the blowout bifurcation, the weakly stable synchronous chaotic attractor becomes transversely
unstable, and hence a complete desynchronization occurs.

In terms of the parameter sensitivity exponents, we characterize the parameter-
mismatching effect on the bubbling and riddling of a weakly stable synchronous chaotic
attractor. In the presence of parameter match, the weakly stable synchronous chaotic attractor is
transformed into a bubbling attractor or a chaotic transient, depending on the global dynamics.
For this case the quantity of interest is the average time τ spent near the synchronization plane.
For the case of the bubbling attractor, τ is the average interburst time, while for the case of
the chaotic transient, τ is its average lifetime. As c is varied from the bubbling or riddling
transition point, τ becomes short because the strength of local transverse repulsion of periodic
repellers embedded in the synchronous chaotic attractor increases.

For the case of bubbling, a typical trajectory on the bubbling attractor exhibits a persistent
intermittent bursting, in which long episodes of nearly synchronous evolution are occasionally
interrupted by short-term bursts. To characterize the intermittent bursting, we use a small
quantity d∗

b for the threshold value of the magnitude of the deviation from the synchronization
plane, dn

(≡ (∣∣u(1)
n

∣∣ +
∣∣u(2)

n

∣∣)/2
)
, such that for dn < d∗

b the bubbling attractor is in the laminar
phase, where a typical trajectory exhibits nearly synchronous motion, and for dn � d∗

b it is
in the bursting phase. Here d∗

b is very small compared to the maximum bursting amplitude
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and it is the maximum deviation from the synchronization plane that may be acceptable in the
context of synchronization. For each c, we follow a trajectory starting from a random initial
orbit point until 50 000 laminar phases are obtained, and then we get the average laminar
length τ (i.e., the average interburst interval) that scales with ε as [15]

τ ∼ ε−µ. (16)

The plot of µ (denoted by open circles) versus c is shown in figure 2(c). As c increases, the
value of µ decreases, because the average laminar length shortens.

For each c in the regime of riddling, we consider an ensemble of trajectories starting
from 1000 randomly chosen initial points on the synchronization plane and obtain the average
lifetime of the chaotic transients. A trajectory may be regarded as having escaped once the
magnitude of deviation dn from the synchronization plane becomes larger than a threshold
value d∗

c such that an orbit point with d > d∗
c lies sufficiently outside the basin of the

synchronous chaotic attractor. Thus, the average lifetime τ is found to exhibit a power-law
scaling behaviour as in equation (16). The plot of the scaling µ (denoted by open circles)
versus c is given in figure 2(c). As c decreases toward the blowout bifurcation point, the
average lifetime shortens, and hence the value of µ decreases.

For both the bubbling and riddling cases, a reciprocal relation between the the scaling
exponent µ and the parameter sensitivity exponent δ is derived and numerically confirmed.
For a given ε, consider a trajectory starting from a randomly chosen initial orbit point on
the synchronization plane. Then, from equations (12)–(15) the ‘average’ deviation of the
trajectory from the synchronization plane after N iterations can be obtained for sufficiently
small ε:

dN = 1
2

(∣∣u(1)
N

∣∣ +
∣∣u(2)

N

∣∣) ∼ (
	

(1)
N + 	

(2)
N

)
ε ∼ Nδε. (17)

Then, the ‘average’ characterization time τ at which the magnitude of the deviation dτ becomes
the threshold value d∗

b,c (i.e., dτ = d∗
b,c) is given by

τ ∼ ε−1/δ. (18)

Hence, the scaling exponent µ for τ becomes just the reciprocal of the parameter sensitivity
exponent δ,

µ = 1/δ, (19)

as in the case of the coupled 1D maps [12]. To confirm the reciprocal relation, the reciprocal
values of numerically obtained δ (denoted by crosses) are plotted in figure 2(c), and we note
that they agree well with the values of µ (denoted by open circles).

2.2. Characterization of the parameter-mismatching effect in coupled pendula

As a second example, we consider an invertible system of two coupled parametrically forced
pendula [13]:

ẋ = F(x, y) = f(x, a) + (1 − α)cg(x, y),

ẏ = G(x, y) = f(y, b) + cg(y, x),
(20)

where the overdot denotes the differentiation with respect to the time, x = (x(1), x(2)) and
y = (y(1), y(2)) are state variables of the two subsystems, c is a coupling parameter between
the subsystems, α (0 � α � 1) is a parameter tuning the degree of the asymmetry of coupling
and g(x, y) is a coupling function of the form,

g(x, y) = (g(x(1), y(1)), g(x(2), y(2))); g(x, y) = y − x. (21)
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Here, the uncoupled dynamics (c = 0) is governed by a parametrically forced pendulum,

f(x, p) = (x(2), f (x(1), x(2), p));
f (x(1), x(2), p) = −2πβ�x(2) − 2π(�2 − p cos 2πt) sin 2πx(1),

(22)

where x(1) is a normalized angle with range x(1) ∈ [0, 1), x(2) is a normalized angular velocity,
β is a normalized damping parameter, � is a normalized natural frequency of the unforced
pendulum, p (p = a, b) is a normalized driving amplitude of the vertical oscillation of the
suspension point. As in two coupled Hénon maps, these two coupled pendula may also be
used as a model for investigating the two-cluster dynamics in many globally coupled pendula.

The phase space of the coupled parametrically forced pendula is five-dimensional with
coordinates x(1), x(2), y(1), y(2) and t. Since the system is periodic in t, it is convenient
to regard time as a circular coordinate in the phase space. We also consider the surface
of section, the x(1)–x(2)–y(1)–y(2) hypersurface at integer times (i.e., t = m,m: integer).
Then, using the fourth-order Runge–Kutta method with a time step h = 0.05, we integrate
equation (20) and follow a trajectory. This phase-space trajectory intersects the surface of
section in a sequence of points. This sequence of points corresponds to a mapping on the
4D hypersurface. The map can be computed by stroboscopically sampling the orbit points
zm ≡ (x(1)(m), x(2)(m), y(1)(m), y(2)(m)) at the discrete time m. We call the transformation
zm → zm+1 the Poincaré map and write zm+1 = P(zm). This 4D Poincaré map P has a constant
Jacobian determinant of e−4πβ�−(4−2α)c.

As an example, we consider the 4D Poincaré map P for the unidirectionally coupled
case of α = 1 and fix the values of β and � at β = 1.0 and � = 0.5. For the ideal case
without parameter mismatch (i.e., a = b), there exists an invariant synchronization plane,
x(1) = y(1) and x(2) = y(2), in the x(1)–x(2)–y(1)–y(2) phase space. However, in a real
situation the parameter mismatch between the two subsystems is unavoidable, and hence the
synchronization plane is no longer invariant. To take into consideration such a mismatching
effect, we introduce a small mismatching parameter ε such that b = a − ε.

For a = 0.85, we investigate the parameter-mismatching effect by varying the coupling
parameter c. For this case an synchronous chaotic attractor exists for c > cb � 0.648. As the
coupling parameter c passes cb, the synchronous chaotic attractor loses its transverse stability
through a blowout bifurcation, and then a complete desynchronization occurs. In the regime of
synchronization, a strongly stable synchronous chaotic attractor without parameter sensitivity
exists for c > ct = 0.858 688, because all periodic saddles embedded in the synchronous
chaotic attractor are transversely stable. However, as the coupling parameter c passes ct , a
bubbling transition occurs through the first transverse bifurcation of a periodic saddle, and
then we have weak synchronization. Hence, only the attractor bubbling occurs in the regime
of weak synchronization (cb < c < ct ), as shown in figures 3(a) and (b) for c = 0.67
and ε = 0.0001. For this case, the weakly stable synchronous chaotic attractor exhibits a
parameter sensitivity, because of local transverse repulsion of the periodic repellers embedded
in the synchronous chaotic attractor.

Such parameter sensitivity of the weakly stable synchronous chaotic attractor for ε = 0
may be characterized by calculating the derivative of the transverse variable u = x − y, denoting
the deviation from the synchronization plane, with respect to ε

(
i.e. ∂u

∂ε

∣∣
ε=0 = ∂x

∂ε

∣∣
ε=0 − ∂y

∂ε

∣∣
ε=0

)
.

Using equation (20), we may obtain the following governing equation for ∂u
∂ε

∣∣
ε=0

,

∂u̇
∂ε

∣∣∣∣
ε=0

= r(x∗)
∂u
∂ε

∣∣∣∣
ε=0

+ fa(x∗, a), (23)
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Figure 3. Effect of parameter mismatch on weak synchronization for a = 0.85 in the 4D Poincaré
map of unidirectionally coupled pendula. For c = 0.67 and ε = 0.0001, projections of a bubbling
attractor onto the (a) x(1)–y(1) and (b) x(2)–y(2) planes are given. In both (a) and (b), the initial
orbit point is (x(1), x(2), y(1), y(2)) = (0.1, 0.3, 0.1, 0.3), the 5 × 103 points are computed before
plotting and the next 5 × 104 points are plotted. (c) Plot of the parameter sensitivity exponents δ

(solid circles) versus c = c − ct for a = 0.85. (d) Plot of the scaling exponents µ (open circles)
for the average interburst interval versus c for a = 0.85. They agree well with the reciprocal of
the parameter sensitivity exponents (crosses).

where ∂u
∂ε

∣∣
ε=0 = (

∂u(1)

∂ε

∣∣
ε=0,

∂u(2)

∂ε

∣∣
ε=0

)
, the 2 × 2 matrix r(x∗) is given by

r(x∗) ≡
(−(2 − α)ch(x(1)∗) 1

fx(1) (x(1), x(2), a) fx(2) (x(1), x(2), a) − (2 − α)ch(x(2)∗)

)
, (24)

and

fa(x∗, a) =
(

0
fa(x

(1), x(2), a)

)
. (25)

Here, fx(1) , fx(2) and fa are the derivatives of f (x(1), x(2), a) with respect to x(1), x(2) and
a, {(x∗

n, y∗
n)} is a synchronous orbit with x∗

n = y∗
n for ε = 0, and h(x) ≡ ∂g(x,y)

∂y

∣∣
y=x

is
a reduced coupling function. Integrating the formula (23) along a synchronous trajectory
starting from an initial orbit point (x∗

0, y∗
0) on the synchronization plane and an initial value

∂u
∂ε

∣∣
ε=0 = 0 for t = 0, we may obtain derivatives Sn(x∗) ≡ ∂u

∂ε

∣∣
ε=0 at all subsequent discrete

time t = n. Then, following the same procedure as in the coupled Hénon maps, one can obtain
the parameter sensitivity exponent δ of equation (15) which measures the degree of parameter
sensitivity of the synchronous chaotic attractor.

In the regime of bubbling, we obtain the parameter sensitivity exponents by changing the
coupling parameter c from the bubbling transition point ct to the blowout bifurcation point
cb. As in the case of coupled Hénon maps, for obtaining satisfactory statistics, we consider
100 ensembles for each c, each of which contains 20 randomly chosen initial orbit points
on the synchronization plane and choose the average value of the 100 parameter sensitivity
exponents obtained in the 100 ensembles. Figure 3(c) shows the plot of such parameter
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sensitivity exponents (denoted by solid circles) versus c ≡ c − ct . Note that the parameter
sensitivity exponent δ monotonically increases as c is varied away from the bubbling transition
point and tends to infinity as c approaches the blowout bifurcation point. This increase in
the parameter sensitivity of the synchronous chaotic attractor is caused by the increase in
the strength of local transverse repulsion of periodic repellers embedded in the synchronous
chaotic attractor.

In terms of the parameter sensitivity exponents, we characterize the parameter-
mismatching effect on the bubbling of a weakly stable synchronous chaotic attractor. For
each c, we follow a trajectory starting from a random initial orbit point until 50 000 laminar
phases are obtained, and then we find that the average laminar length τ exhibits a power-law
scaling behaviour as in equation (16). The plot of the scaling exponent µ (denoted by open
circles) versus c ≡ c − ct is shown in figure 3(d). As c decreases from ct , the value of
µ decreases, because the average laminar length shortens. As in the case of coupled Hénon
maps, the scaling exponent µ is given by the reciprocal of the parameter sensitivity exponent
δ (see equation (19)). To examine the reciprocal relation, the reciprocal values of numerically
obtained δ (denoted by crosses) are plotted in figure 3(d). Note that they agree well with the
values of µ (denoted by open circles), as in the preceding example of coupled Hénon maps.

So far, in both systems of mutually coupled Hénon maps with α = 0.75 and
unidirectionally coupled pendula with α = 1, we have characterized the parameter-
mismatching effect. Through equation (6) (equation (24)), one can easily see that the parameter
sensitivity exponent for a given (a, c) in the case of α = 0.75 (α = 1) is the same as that for
the value of [a, 1.25c/(2 − α)] ([a, c/(2 − α)]) for any other case of α. Thus, the results of
the parameter sensitivity exponents given in figure 2(b) (figure 3(c)) may be converted into
those for the case of general α only by a scale change in the coupling parameter such that
c → 1.25c/(2 − α) [c → c/(2 − α)].

3. Summary

To examine the universality for the parameter-mismatching effect on weak synchronization,
we have studied the coupled Hénon maps and coupled pendula which are multidimensional
invertible systems. By extending the method proposed in coupled 1D noninvertible maps, we
have investigated the parameter sensitivity of a weakly stable synchronous chaotic attractor.
For the case of coupled Hénon maps and pendula, there exist two parameter sensitivity
functions, 	

(i)
N (i = 1, 2). However, the unbounded growth of both 	

(1)
N and 	

(2)
N is governed

by the same largest local transverse multiplier λ
T,1
M (i.e., the largest eigenvalue of RM in

equation 10)). Hence, they grow unboundedly with the same parameter sensitivity exponent
δ

(
i.e., 	(i)

N ∼ Nδ
)
. In the regime of weak synchronization, we have numerically obtained

the parameter sensitivity exponents by changing the coupling parameter and quantitatively
characterized the parameter sensitivity of the weakly stable synchronous chaotic attractor. In
terms of these parameter sensitivity exponents, the parameter-mismatching effect on the scaling
behaviour, associated with the average laminar length and the average chaotic transient lifetime,
has been investigated. For this case, the reciprocal relation between the scaling exponent µ

and the parameter sensitivity exponent (i.e., µ = 1/δ) has been derived and numerically
confirmed. Hence, it is conjectured that the reciprocal relation might be ‘universal’, because it
holds in typical coupled chaotic systems such as the coupled 1D maps, coupled Hénon maps
and coupled pendula. For more complete examination of the universality, further numerical
works in several other kinds of coupled systems and rigorous mathematical works are required.
However, this subject is beyond the scope of the present work, and is left for future work.
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